
Statechains: Off-chain Transfer of UTXO Ownership

Ruben Somsen

October 3, 2018

Abstract

We describe a protocol for Bitcoin and similar cryptocurrencies that allows changing own-
ership of Unspent Transaction Outputs (UTXOs) in an off-chain manner by passing on a
transitory key – a private key that moves from one owner to the next. All UTXOs are backed
by off-chain transactions that the final owner can redeem on-chain. Transfer of ownership is
facilitated by an entity that keeps a public record of each transfer. We call this public record
a Statechain. The entity cannot cheat unless prior owners of transitory keys are complicit.
Fraudulent behavior always produces publicly verifiable evidence, thus exposing the fraudu-
lent activity of the entity and prompting those without compromised transitory keys to safely
withdraw on-chain.

1 Statechains in Context
The Statechains protocol provides an alternative method of transferring coins. It only makes use
of the blockchain when entering or exiting the system, or in case of a dispute. While not as secure
as on-chain transactions, it is thought to be a step up from the multisig security of Federated
Sidechains[1]. Compared to the Lightning Network[2], more security assumptions are made, but
coins can be transferred directly, without having to find a path on a network of sufficiently funded
channels. Statechains also have a unique downside – UTXOs need to be transferred in full and
cannot easily be split into smaller amounts.

Statechains utilize Schnorr Signatures[3], Eltoo[4], Adaptor Signatures[5], and (optionally) Graftroot[6].
Schnorr Signatures, more specifically using MuSig[7], enable us to achieve multisig with a single key.
Eltoo allows us to create non-expiring channels with multiple participants. Adaptor Signatures
are crucial to ensure signatures are swapped atomically, ensuring participants cannot misbehave
without evidence of misconduct. Graftroot simplifies the way users can exit the system, and avoids
potential issues when a hard fork occurs. We’d like to express our sincere gratitude to the authors
of these works. Without it, Statechains would not be possible.

What follows is a short overview of these techniques, as they are a prerequisite to fully under-
standing Statechains. Please refer to the original work to gain a more complete understanding of
each technique.

1.1 Schnorr Signatures
The goal is to prove knowledge of a secret and attach that proof to a message (i.e. a signature).
Capitalized letters are curve points. Multiplying by a curve point is irreversible. Private key a has
public key a ∗ G = A (where G is a publicly known curve point). To sign a message and prove
ownership of a in zero knowledge, we create ephemeral key r ∗ G = R. We then create signature
s = r + a ∗ hash(R,message). We give R and s to the verifier, who checks that s ∗G is equal to
R+A∗hash(R,message). If equal, it proves that the signature came from someone who knows a.

1.2 Adaptor Signatures
The goal of Adaptor Signatures is to create signature A in such a way that it reveals a secret
which completes signature B (i.e. both signatures become valid) For notation purposes, we use
to mark the key as an adaptor secret. For example: #a ∗ G = #A, which is a different key
than A, but is chosen by the same person. We only use # once to signify something is an adaptor

1

secret, e.g. #AB = #A+#B. We use s′ (notice the apostrophe) to signify an s that is (provably)
missing an adaptor secret. In the following example, A and B need to reveal #a and #b before
the signatures can be completed:

Adaptor signature A:
R = R1 + #AB
s′ = r1 + a ∗ hash(R,message)

Adaptor signature B:
R = R2 + #AB
s′ = r2 + b ∗ hash(R,message)

Once A and B have received the incomplete signature s′, they can reveal their secret to each
other. This can either be communicated directly, or via the blockchain by publishing a complete
signature (#ab + s′ = s and s − s′ = #ab). Note that the common example is to use a single
adaptor secret, but the variation we describe is better suited for situations involving more than
two signatures and multiple participants.

1.3 Eltoo
A payment channel in Bitcoin is typically created by locking up coins on-chain between two par-
ties, Alice and Bob. They then proceed to create off-chain transactions, moving the locked up
coins between A and B. Every time they update the state, the previous state needs to be made
ineffective. Before Eltoo, this was done by revealing a secret that allowed A to take B’s money or
vice versa if they ever tried to send an old state to the blockchain.

In the case of Statechains, this is not an option. Every time we update the state, a new party gets
added into the mix. Imagine there are three parties: A, B, and C. If A cheats, there is no way
to decide if B should get the money or C. Eltoo solves this. It doesn’t try to punish a user who
sends the wrong state, but instead it allows old states to be replaced by newer states. If an old
state does get published, one simply overwrites it with the latest state in order to prevent any losses.

For our Statechains implementation, this means that if coins get transferred from B to C, both of
them will have a valid on-chain transaction, but C’s transaction will always take precedence, and
is able to overwrite B’s transaction.

2 The Statechain Protocol
A Statechain is a ledger that contains the history of every UTXO that is under its management.
This ledger is maintained by the Statechain entity and serves to make them accountable for mis-
behavior. We will refer to the Statechain entity as key A. Note that while our example shows the
entity as having only one key, a real implementation should use a different key for every UTXO.
The users of the Statechains will be B, C, D, etc.

When user B wishes to deposit coins into the Statechain, A and B create an Eltoo-style channel.
If this was a Lightning-style Eltoo channel, the coins would be locked up between A and B (using
MuSig[7]), with a timelock back to B (ensuring B is the actual owner in case of dispute). For
our protocol, we do something slightly different. B creates transitory key X – a key that will
eventually be passed on to future recipients. The coins will be locked up between A and X, but
the timelock will still go back to B.

To transfer the coins from B to C, A and B agree to update the state in such a way that the
timelock will now go to C. Knowledge of transitory key X is then transferred to C, enabling her
to transfer the coins to the next user in similar fashion.

2

Figure 1: UTXO ownership gets transferred from B (prior state) to C (new state).

While both B and C now know X, entity A promises to only update the state according to the
wishes of the last owner (C). If entity A breaks this promise and colludes with a previous owner
(B), then the last owner can prove misconduct and ruin the reputation of entity A. The way
we make it provable, is by having the owner of a UTXO sign off on the transfer, and publishing
it on the Statechain. If A ever facilitates an action that was not signed off on, then this proves
misconduct. We’ll elaborate on this in later sections.

2.1 Atomic Transfer
When entity A facilitates the transfer from B to C, they need a signature from B, which proves
that B specifically requested the state update. They also need a signature from C, where she
acknowledges receipt of the state update transaction. All of this needs to happen atomically
(either all signatures become valid, or none), this way none of the parties can claim the transaction
occurred without their permission. Adaptor Signatures allow us to do just that, and it even enables
us to do it with multiple UTXOs.

2.2 Transferring Ownership of a Single UTXO
Prior state: New state:
AXor(B + timelock)→AXor(C + timelock)

Preparation:
1. A, B, and C create and share adaptor secrets #A+#B +#C = #ABC
2. B and C create adaptor signature BC that is missing #ABC, and pass it on to A
3. A and X (known by B) create adaptor signature AX that is missing #ABC, and pass it on to C

Steps:
1. C reveals #c to B
2. B reveals #b+#c = #bc to A
3. A publishes signature BC to the Statechain, which reveals #abc to C
4. A helps C acquire transitory key X (*) See appendix I

If aborted after step [_]:
1. B can resume the payment at a later time
2. A can resume the payment later, B can cancel this by paying himself
3. The payment is complete, but can only be redeemed on-chain
4. The payment is complete, and can also be sent to others off-chain

2.3 Atomic Swap of Multiple UTXOs
Prior state: New state:
AXor(B + timelock)→AXor(C + timelock)
AY or(D + timelock)→AY or(E + timelock)
AZor(F + timelock)→AZor(G+ timelock)

3

Preparation:
1. A,B,C,D,E, F,G create and share their adaptor secrets, #A+#B + ... = #ABCDEFG
2. B,C,D,E, F,G create adaptor signature BCDEFG that is missing #ABCDEFG, and pass
it on to A
3. A and X/Y/Z (known by B/D/F) create adaptor signature AX/AY/AZ that is missing
#ABCDEFG, and pass it on to C/E/G

Steps:
1. C/E/G reveals #c/#e/#g to B/D/F
2. B/D/F reveals #bc/#de/#fg to A
3. A publishes signature BCDEFG to the Statechain, which reveals #abcdefg and completes
signature AX/AY/AZ
4. A helps C/E/G acquire transitory key X/Y/Z (*) See appendix

3 Improving Security
Thus far we have described a model with single entity A. Instead, we can replace A with a fed-
erated group of signatories. This can be a threshold (e.g. 8 of 10 plus the transitory key), which
matches the security assumptions of federated sidechains.

Another potential security improvement is that the transfer of the transitory key can be han-
dled by a Hardware Security Module (HSM). If the transitory key never leaves the HSM and thus
can only act in accordance to the protocol, it becomes impossible for A to collude with transitory
key owners. This assumes the HSM is unhackable, which thus far has been proven to be difficult to
achieve[8]. We note that the protocol is naturally secure against loss of coins due to HSM failure,
because the transitory key is only needed to transfer the coins and the off-chain bitcoin transaction
can be stored outside of the HSM.

4 A Public Ledger
The entity that is operating the Statechain is expected to keep a public ledger in which every trans-
fer gets recorded. This acts as evidence against unauthorized withdrawals. Either the unauthorized
withdrawal conflicts with the ledger, or the Statechain was forked to match the withdrawal. Fraud
can be proven in both cases, provided the users store the evidence that their transaction was at
some point included in the Statechain. Unlike conventional blockchains, every UTXO has a his-
tory that is independent of the history of other UTXOs, since coins cannot be merged or split into
multiple outputs. This allows you to selectively verify and track the history of only the UTXOs
you care about.

Figure 2: For every off-chain Bitcoin transaction an equivalent Statechain transaction exists.

If the Statechain entity is malicious, at worst they can secretly obtain a bunch of transitory keys
and withdraw all of them on-chain simultaneously. After this, the provable misconduct ruins their

4

reputation, and everybody whose transitory key wasn’t compromised can proceed to safely with-
draw on-chain.

While the security of the transitory keys lies with the users, and therefore has the potential to
leak, it does reduce the liability of the Statechain entity. Even if they were compelled by law to
confiscate certain coins, they literally do not have the means to do so.

5 UTXOs as Coins
Since the protocol only allows full UTXOs to be swapped and transferred, the UTXOs can be
thought of as fixed-value coins. If you want to pay 0.5 BTC but only have 1 BTC, you will first
have to trade your 1 BTC output for two 0.5 BTC outputs with any willing online participant.
For smaller amounts this may be infeasible, since on-chain redemption of small amounts may be
too costly in terms of network fees. The Statechain should restrict the allowed denominations
in order to facilitate trading bigger outputs for smaller ones. Note that the Statechain entity
can support multiple cryptocurrencies, meaning the Statechain can enable users to execute swaps
between them.

6 Microtransactions Through Payment Channels
In the context of Statechains, microtransactions are amounts that are smaller than the smallest
allowed denomination. The system we described thus far, does not deal with microtransactions
elegantly. This also means it’s hard to charge fees for the service. One solution is to use Lightning
channels on top of Statechains.

For example, if user B sends coins to BC, with an on-chain timelocked redemption back to B,
we have essentially created a Lightning-compatible payment channel between B and C on the
Statechain. The difference compared to a conventional Lightning channel is that the Statechain
was off-chain to begin with, so opening and closing payment channels is cheap (if cooperative),
allowing channel balances to be easily readjusted. This makes Statechains quite useful as a layer
between Bitcoin and the Lightning Network. Also note that updating the Lightning channel and
swapping UTXOs can happen atomically.

Figure 3: By assigning coins on the Statechain to two owners (BC), we have created a channel.

7 Withdrawing On-Chain
When user C wishes to withdraw from the Statechain, she can collaborate with A to create an
on-chain withdrawal transaction. We can utilize Adaptor Signatures here as well in order to swap
C’s redemption signature with the on-chain transaction. Note that C has to specifically sign the
message she wants A to sign, otherwise C can claim A sent the coins somewhere else than the
agreed upon destination. Alternatively, assuming the blockchain supports Graftroot, C can swap
her redemption signature for a Graftroot signature, allowing her to construct her own on-chain
transaction.

5

One important benefit of using Graftroot is that it gives users a way to withdraw coins on other
chains, in the event of a network split due to a hard fork. This also solves the issue for custodians
of coins of deciding which side of a hypothetical fork they are going to honor. If the Graftroot
script key is equal to the key that signed the withdrawal on the Statechain, then this also proves
that A did not illegitimately claim the coins on a fork of Bitcoin.

If previous owner B ever sends their old on-chain transaction to the blockchain, a response is
required in order to prevent him from taking the coins. Current owner C should always monitor
the blockchain to detect when this happens. In response, she will either have to use her own
on-chain transaction, or initiate a withdrawal with entity A.

During a withdrawal, the coins can also be deposited back into the Statechain, causing the UTXO
to refresh. In general, it can be beneficial to refresh the UTXO after a certain number of Statechain
transactions, since the likelihood of a transitory key leak increases over time.

References
[1] A.Back, M.Corallo, L.Dashjr, M.Friedenbach, G.Maxwell, A.Miller, A.Poelstra,

J.Timón, P.Wuille, Enabling Blockchain Innovations with Pegged Sidechains.
https://blockstream.com/sidechains.pdf, 2014

[2] J.Poon, T.Dryja, The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments.
https://lightning.network/lightning-network-paper.pdf, 2016

[3] J.Lau, G.Maxwell, J.Nick, A.Poelstra, T.Ruffing, R.Russell, A.Towns, P.Wuille, Schnorr Sig-
natures. https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki, 2018

[4] C.Decker, R.Russell, O.Osuntokun, eltoo: A Simple Layer2 Protocol for Bitcoin.
https://blockstream.com/eltoo.pdf, 2018

[5] Andrew Poelstra, Scriptless Scripts. http://diyhpl.us/~bryan/papers2/bitcoin/2017-03-mit-
bitcoin-expo-andytoshi-mimblewmble-scriptless-scripts.pdf, 2017

[6] Gregory Maxwell, Graftroot: Private and efficient surrogate scripts under the taproot assump-
tion. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-February/015700.html,
2018

[7] G.Maxwell, A.Poelstra, Y.Seurin, P.Wuille, Simple Schnorr Multi-Signatures with Applications
to Bitcoin. https://eprint.iacr.org/2018/068.pdf, 2018

[8] G.Chen, S.Chen, Y.Xiao, Y.Zhang, Z.Lin, T.H.Lai, SgxPectre Attacks: Stealing Intel Secrets
from SGX Enclaves via Speculative Execution https://arxiv.org/pdf/1802.09085.pdf, 2018

6

(*) Appendix: Detailed explanation of transitory key exchange

Prior state: New state:
AXor(B + timelock)→AXor(C + timelock)

Signature AX is constructed in such a way that A can help C learn transitory private key x.

Adaptor Signature AX:
R = R1 +R2 + #ABC
s1′ = r1 + a ∗ hash(R,message)
s2′ = r2 + x ∗ hash(R,message)
s′ = s1′ + s2′

Preparation:
1. r1 is chosen by A and should never be revealed
2. r2 is known to both B and C (if not, C can abort)
3. B gives s1′ to A
4. A gives s′ and R1 to C (R can be derived from R1, which also proves R2 was used)

The final step of the transfer (after the signature is published on the Statechain):
A reveals s1′ to C, allowing her to learn the transitory key: x = s′−s1′−r2

hash(R,message) .

B could simply hand the transitory key to C, but this cannot be achieved atomically. Send-
ing it beforehand risks exposing the transitory keys to participants who may abort the protocol
early, and sending it afterwards assumes the willing cooperation of B, which at this point is no
longer guaranteed. A, on the other hand, will want people to continue using their Statechain.

7

	Statechains in Context
	Schnorr Signatures
	Adaptor Signatures
	Eltoo

	The Statechain Protocol
	Atomic Transfer
	Transferring Ownership of a Single UTXO
	Atomic Swap of Multiple UTXOs

	Improving Security
	A Public Ledger
	UTXOs as Coins
	Microtransactions Through Payment Channels
	Withdrawing On-Chain

